

Features:

- 2,500 to 5,000 Vrms electrical isolation
- Choice of a Single and Dual LED
- Phototransistor or Photodarlington Sensor
- Low-cost plastic Dual-In-Line (DIP) package

Agency Approvals:

- ML Certification No: E58730
- VDE Pending

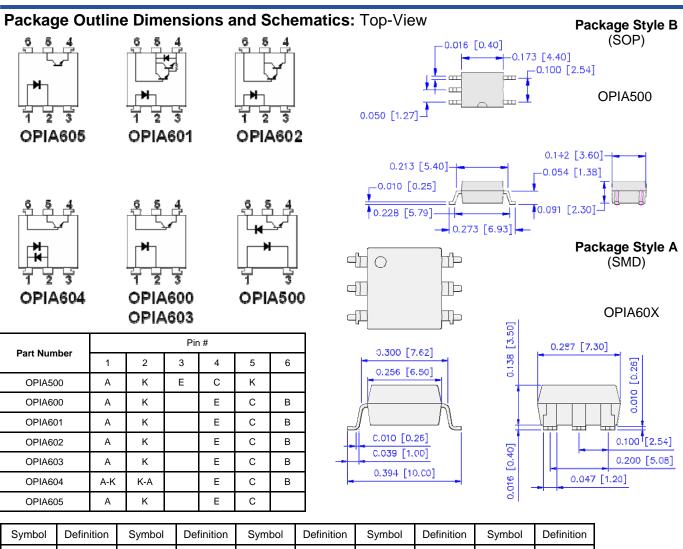
Description:

The OPIA series optocouplers are designed for applications that use an analog output (Phototransistor or Photodarlington) in a dual-in-line package. A wide selection of configurations are available. With typical isolation voltage of 2,500 or 5,000 Volts RMS, these product meet typical power system isolation requirements.

Theory of operation: The LED transmitter is used to illuminate the Photosensor providing electrical isolation between two power systems while maintaining the ability to transmit information from one power system to the other. In many applications, analog signal levels may be required to be transmitted between two power systems while maintaining isolation between the power systems up to 5,000 volts RMS. A variety of LED and photosensor configurations are available depending on the system requirements.

The ratio Current Transfer Ratio (CTR) is identified between the output current and input current for analog photosensors. CTR ratios can range from as low as 5 to over 9,000 depending on the device.

$$CTR = \frac{Photosenso \quad r - Current}{LED - Current} = \frac{20 \text{ mA}}{10 \text{ mA}} * 100 = 200$$


All SMD product is shipped in tape and reel with "TR" identified on the end of the part number. Example: OPI600ATRis a 6-Pin SMD shipped in tape and reel (TR).

Applications:

- High voltage isolation
- PCBoard power system isolation
- Industrial equipment power isolation
- Medical equipment power isolation
- Office equipment

	Analog Output Devices Ordering Information									
Part Number	Isolation Voltage Max. (Vrms)	CTR Min/Typ/Max	Typ. Tr / Tf (μs) R _L = 100 ohms	Package	Configuration					
OPIA500B	3,750	19 / - / 50	LH-HL 0.8 / 0.8 (1.9K)	5-Pin SOP	AK—KCE					
OPIA600A	5,000	60 / - / 600	5/4	6-Pin SMD	A K—B C E					
OPIA601A	5,000	600 / - / 9,000	60 / 50	6-Pin SMD	A K—B C E (Dar)					
OPIA602A	5,000	500 / 4,000 / -	5 / 60	6-Pin SMD	A K—B C E (Dar)					
OPIA603A	5,000	50 / - / 600	2/3	6-Pin SMD	A K—B C E					
OPIA604A	5,000	50 / - / 600	2/3	6-Pin SMD	A K, K A—B C E					
OPIA605A	5,000	40 / - / 400	4/3	6-Pin SMD	A K—C E					
		9	n: Definition of Terms on—Sensor Identification							
LED	A = Anode	K = Cathode								
Sensor	B = Base	C = Collector	E = Emitter (Dar) = Photo Darlington							
Packaging Part Number Suffix: TU = Ship in Tubes TR = Tape and Reel Example: OPIA600A-TR										

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature	-55° C to +125° C
Operating Temperature OPIA600, OPIA601, OPIA602 OPIA500 OPIA603, OPIA604, OPIA605	-30° C to +100° C -55° C to +85° C -55° C to +125° C
Isolation voltage (1 minute) OPIA6XX Series OPIA500	5,000 Vrms 3,750 Vrms
Total Package Power Dissipation OPIA6 Series OPIA500	200 mW 100 mW
Lead Soldering Temperature (1/16" (1.6 mm) from case for 5 seconds with soldering iron)	260° C

Input Diode

Continuous Forward Current OPIA6XX Series OPIA500	50 mA 25 mA
Peak Forward current (1 µs pulse width, 300 pps) OPIA6XX Series OPIA500	1 A 200 mA
Reverse Voltage OPIA6XX Series OPIA500	6 V 5 V
Power Dissipation OPIA6XX Series OPIA500	70 mW 45 mW

Output Phototransistor

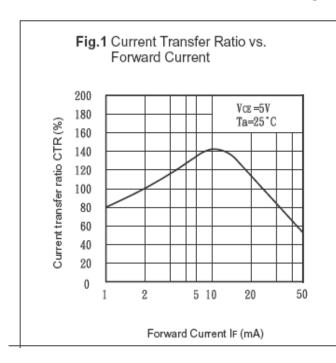
Collector-Emitter Voltage OPIA600, OPIA604, OPIA605 OPIA603 OPIA601 OPIA602	60 V 350 V 300 V 30 V
Emitter-Collector Voltage OPIA600, OPIA605 OPIA603, OPIA604 OPIA601, OPIA602	6 V 7 V -
Collector Current OPIA600, OPIA603, OPIA604, OPIA605 OPIA601, OPIA602	50 mA 150 mA
Power Dissipation OPIA500 OPIA600, OPIA605 OPIA601, OPIA602, OPIA603, OPIA604	100 mW 150 mW 200 mW

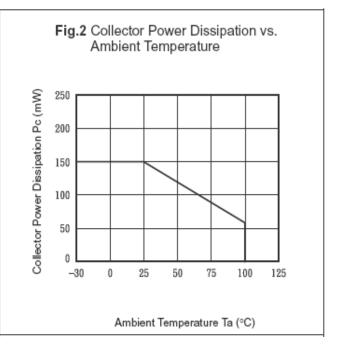
Electrical Characteristics: (OPIA500D)

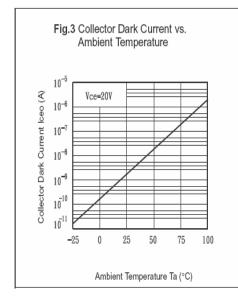
	•						
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Forward voltage	VF	IF=16mA	•	1.7	1.95	٧
Input	Reverse current	lr	VR=5V	• •	• •	10	uA
	Terminal capacitance	Ct	V=0, f=1MHz	• •	60	250	рF
	High level output current (1)	IOH (1)	IF=0,Vcc=5.5V,Vo=5.5V	-	3	500	nΑ
	High level output current (2)	ЮН (2)	IF=0,Vcc=15V,Vo=15V	-	-	1.0	uA
	High level output current (3) (*6)	Юн (3)	1F-0, VCC-15 V, VO-15 V	-	-	50	uA
Output	High level supply current (1)	ICCH (1)	IE=0.\/cc=1E\/\/c=Onon	-	0.02	1.0	uA
	High level supply current (2) (*6)	ICCH (2)	IF=0,Vcc=15V,Vo=Open	-	-	2.0	uA
	Low level supply current	ICCL	IF=16mA,Vcc=15V,Vo=Open	-	120	-	uA
	Low level supply voltage	VL	IF=16mA,Vcc=4.5V,Io=2.4mA	• •	-	0.4	V
	Current transfer ratio (1)	CTR(1)	IF=16mA,VCC=4.5V,VO=0.4V,	19	• •	50	%
	Current transfer ratio (2) (*6)	CTR(2)	RL=1.9K ohm	15	• •	-	%
	Isolation resistance	Riso	DC=500V,40 to 60%RH	5x10 ¹⁰	1x10 ¹¹	-	ohm
	Floating capacitance	Cf	V=0,f=1MHZ	• •	0.6	1.0	pF
Transfer	"High>Low" propagation delay time	tphL	IF=16mA,Vcc=5V,	• •	0.2	0.8	us
charac- teristics	"High>Low" propagation delay time	tрLН	RL=1.9K ohm	-	0.4	0.8	us
	Instantaneous common mode rejection voltage (High level output)	СМн	IF=0,Vcc=5V, Vcм=1.0KV(p-p), RL=1.9K ohm	15	30	-	KV/us
	Instantaneous common mode rejection voltage (High level output)	CML	IF=16mA,Vcc=5V, VcM=1.0KV(p-p), RL=1.9K ohm	-15	-30	-	KV/us

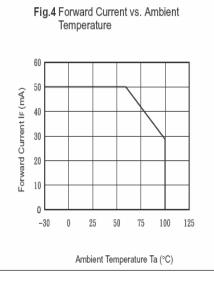
Electrical Characteristics (OPIA600 Series)

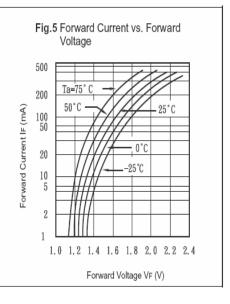
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
Input Dio	de	l					
V _f	Forward Voltage OPIA600, OPIA601, OPIA602, OPI604, OPIA605 OPIA603	- 1.0	1.2 1.2	1.4 1.3	V	$I_F = 20 \text{ mA}$ $I_F = 10 \text{ mA}$	
V _{FM}	Peek Forward Voltage OPIA600, OPIA601, OPIA602, OPI604 OPIA603, OPIA605	- -	-	3.5 3.0	V	I _{FM} = 500 mA	
I _r	Reverse Current OPIA600, OPIA601, OPIA602, OPI604, OPIA605 OPIA603	-	-	10 10	μΑ	$V_R = 4 V$ $V_R = 5 V$	
Ct	Terminal Capacitance OPIA600, OPIA601, OPIA602, OPI604, OPIA605 OPIA603	-	30 30	-	pf	V = 0.0 V, f = 1K Hz V = 0.0 V, f = 1M Hz	
Output Pl	nototransistor—OPIA600D, OPIA603D, O	PIA604D	, OPIA6	05D			
I _{CEO}	Collector dark Current OPIA600, OPIA604, OPIA605 OPIA603	-	- 10	100 200	nA	$I_F = 0$ mA, $V_{CE} = 20$ V $I_F = 0$ mA, $V_{CE} = 300$ V	
V _{CEO}	Collector-emitter Saturation Voltage OPIA600, OPIA604, OPIA605 OPIA603	- -	0.1	0.3 0.4	V	$I_F = 20 \text{ mA}, I_C = 1 \text{ mA}$ $I_F = 8 \text{ mA}, I_C = 2.4 \text{ mA}$	
f _C	Cutt-Off frequency	-	80	-	K Hz	V_{CC} = 5 V, I_C = 2 mA, R_L = 100 Ω	
t _r	Rise Time OPIA600, OPIA604 OPIA603 OPIA605	- - -	5 2 4	20 - 20	μs	$\begin{aligned} &V_{CC} = 5 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega \\ &V_{CC} = 10 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega \\ &V_{CC} = 2 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega \end{aligned}$	
t _f	Fall Time OPIA600, OPIA604 OPIA603 OPIA605	- - -	4 3 3	20 - 20	μs	$\begin{aligned} &V_{CC} = 5 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega \\ &V_{CC} = 10 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega \\ &V_{CC} = 2 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega \end{aligned}$	
Continued on Next Page							

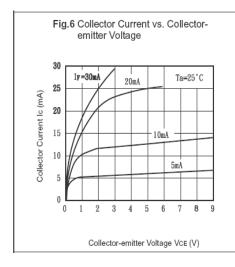


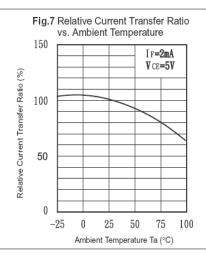

Electrical Characteristics (OPIA600 Series) - Continued from Previous Page

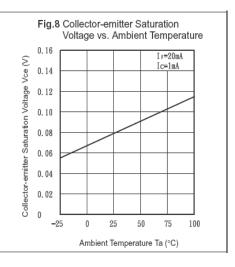

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Output P	hotoDarlington—OPIA601D, OPIA6022D	•				
I _{CEO}	Collector dark Current OPIA601 OPIA602	-	- -	1.0 0.1	μΑ	$I_F = 0$ mA, $V_{CE} = 200$ V $I_F = 0$ mA, $V_{CE} = 10$ V
V_{CEO}	Collector-emitter Saturation Voltage OPIA601 OPIA602	-	-	1.5 1.0	V	$I_F = 20 \text{ mA}, I_C = 5 \text{ mA}$ $I_F = 8 \text{ mA}, I_C = 2 \text{ mA}$
f _C	Cutt-Off frequency OPIA601, OPIA602	-	7.0	-	K Hz	$V_{CC} = 5 \text{ V}, I_{C} = 2 \text{ mA}, R_{L} = 100 \Omega$
t _r	Rise Time OPIA601 OPIA602		60 5	300 40	μs	V_{CC} = 2 V, I_C = 20 mA, R_L = 100 Ω V_{CC} = 10 V, I_C = 50 mA, R_L = 100 Ω
t _f	Fall Time OPIA601 OPIA602	-	50 60	250 100	μs	V_{CC} = 2 V, I_{C} = 20 mA, R_{L} = 100 Ω V_{CC} = 10 V, I_{C} = 50 mA, R_{L} = 100 Ω
Coupled	Characteristics Phototransistor/Photoda	rlington				
CTR	Current Transfer Ratio OPIA600 OPIA601 OPIA602 OPIA603 OPIA604 OPIA605	60 600 500 50 60 40	- - 4,000 - - -	600 9,000 - 600 600 400	%	$\begin{split} I_F &= 2 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_F &= 2 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_F &= 10 \text{ mA}, \ V_{CE} = 10.0 \ V \\ I_F &= 5 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_F &= 1 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_F &= 10 \text{ mA}, \ V_{CE} = 5.0 \ V \end{split}$
C_f	Floating Capacitance	-	0.6	1.0	pF	V = 0.0 V, f = 1M Hz
R _{ISO}	Isolation resistance	5X10 ¹⁰	10 ¹¹	-	ohm	DC500V

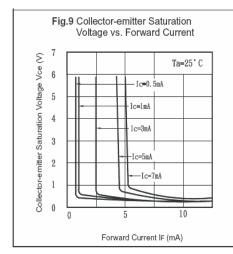


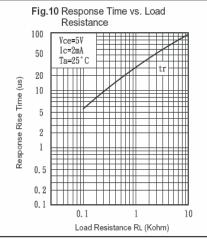

OPIA600

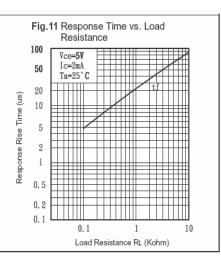









OPIA600



OPIA601

Fig. 4 Forward Current vs.

Ambient Temperature

50

40

40

30

-30

0

25

50

75

100

125

Ambient temperature Ta(*C)

Fig. 2 Collector Power Dissipation

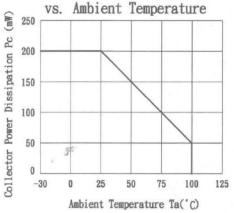


Fig. 6 Collector Current vs.

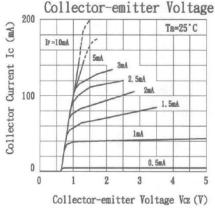


Fig. 5 Forward Current vs.

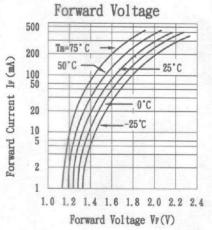
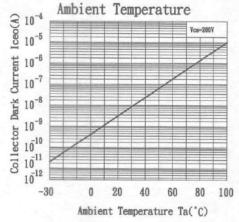
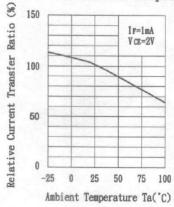
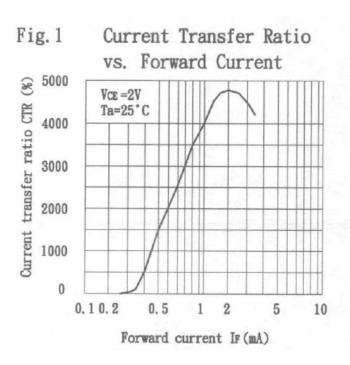
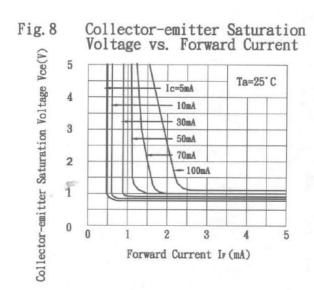
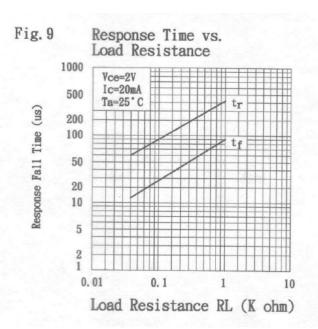


Fig. 3 Collector Dark Current vs.


Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature



OPIA601

OPIA602

Fig. 1 Forward Current vs.
Ambient Temperature

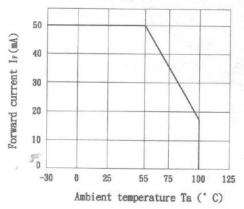


Fig. 3 Peak Forward Current

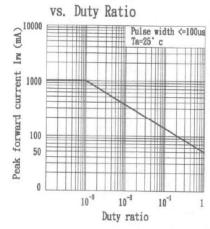


Fig. 5 Current Transfer Ratio vs. Forward Current

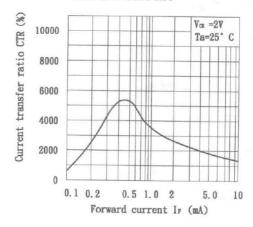


Fig. 2 Collector Power Dissipation

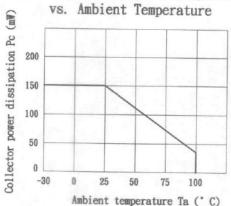


Fig. 4 Forward Current vs.
Forward Voltage

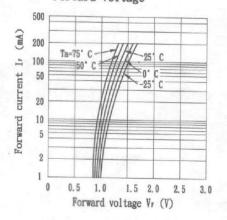
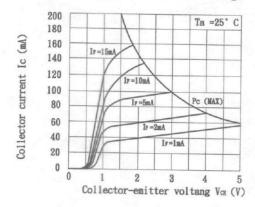



Fig. 6 Collector Current vs. Collector-emitter Voltage

OPIA602

Fig. 11 Collector-emitter Saturation Voltage vs. Forward current

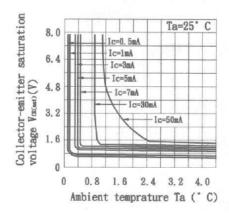


Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

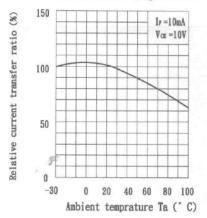


Fig. 9 Collector Dark Current vs.
Ambient Temperature

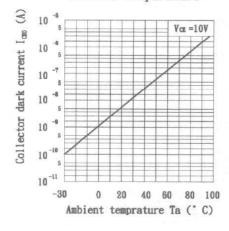
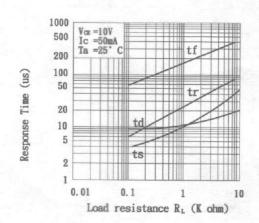
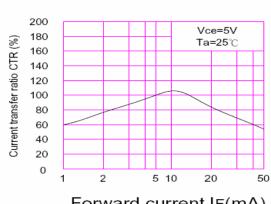



Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature


Fig. 10 Response Time vs. Load Resistance

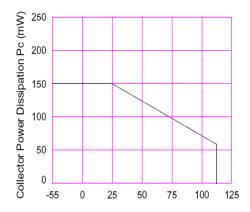

OPIA603

Fig. 1 Current Transfer Ratio **Forward Current**

Forward current IF(mA)

Fig.2 Collector Power Dissipation vs. Ambient Temperature

Ambient Temperature Ta(°C)

Fig.4 Forward Current vs. **Ambient Temperature**

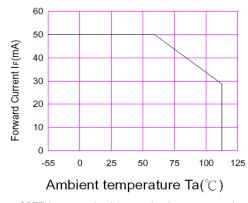
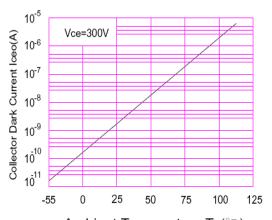
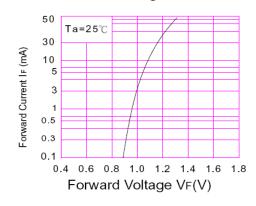




Fig.3 Collector Dark Current vs. **Ambient Temperature**

Ambient Temperature Ta(°C)

Forward Current vs. Fig.5 Forward Voltage

OPIA603

Fig.6 Collector Current vs.

Collector-emitter Voltage

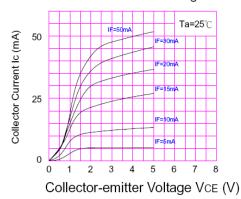


Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature

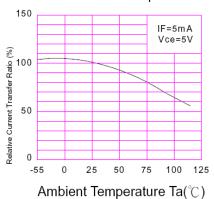


Fig.8 Collector-emitter Saturation
Voltage vs. Ambient Temperature

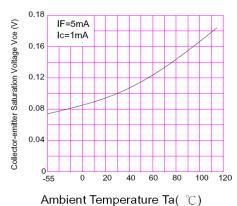


Fig.9 Collector-emitter Saturation Voltage vs. Forward Current

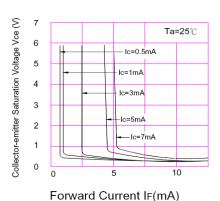
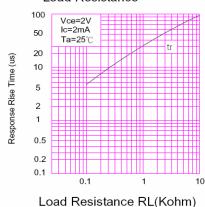
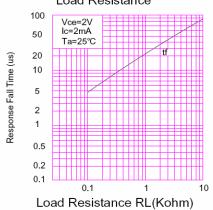
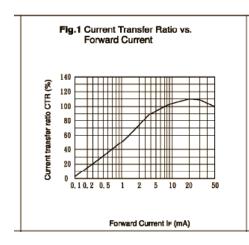
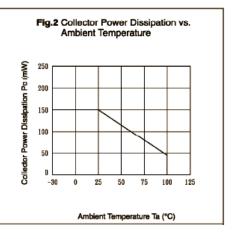
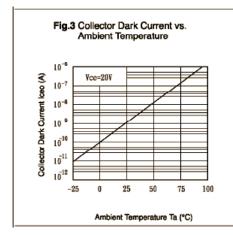
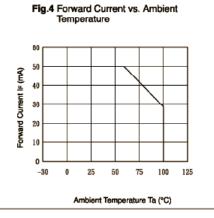


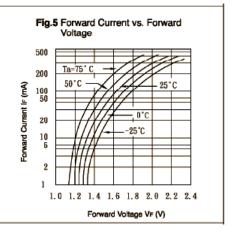
Fig.10 Response Time vs. Load Resistance

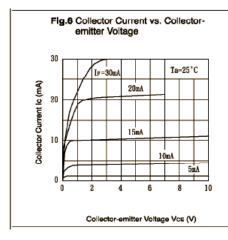




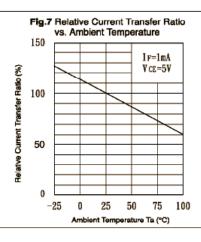

Fig.11 Response Time vs. Load Resistance

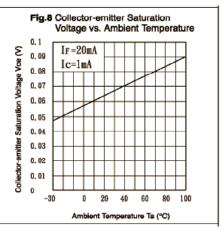


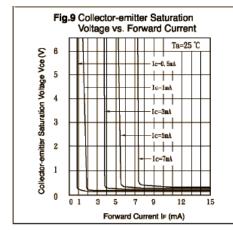


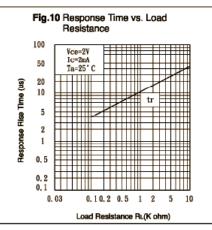

OPIA604

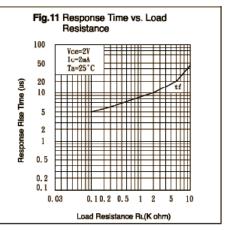






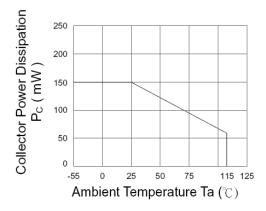




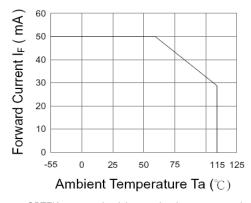


OPIA604

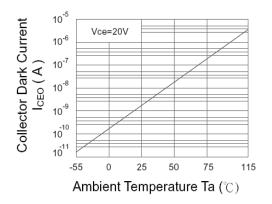
OPIA605

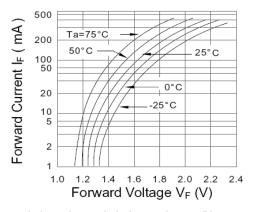

Current Transfer Ratio Fig.1 vs. Forward Current 200 VCE=5V 180 Current transfer ratio Ta=25℃ 160 140 CTR (% 120 100 80 60

2


5 10 Forward current I_F (mA)

Collector Power Dissipation vs. Ambient Temperature


40 20 0


Forward Current vs. Ambient Temperature

Collector Dark Current vs. Ambient Temperature

Forward Current vs. Fig.5 Forward Voltage

OPIA605

Fig.6 Collector Current vs.
Collector-Emitter Voltage

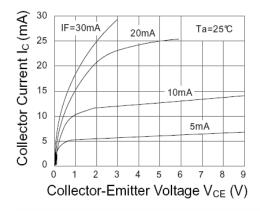


Fig.8 Collector-Emitter Saturation Voltage vs. Ambient Temperature

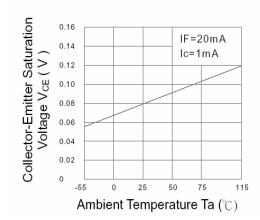


Fig.10 Response Time vs. Load Resistance

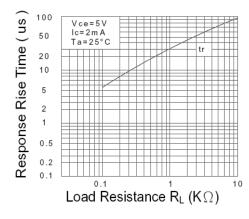


Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature

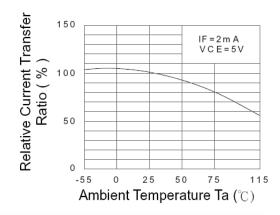
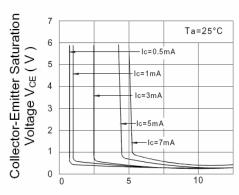
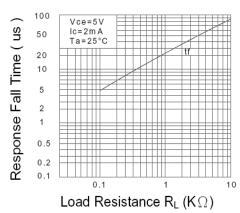




Fig.9 Collector-Emitter Saturation Voltage vs. Forward Current

Forward Current I_F (mA)

Fig.11 Response Time vs. Load Resistance

Quality / Reliability Requirements

Parameter	Failure Criteria	Conditions
LITER D.I.	± 10%	11 samples after 500Hrs
HTRB D I _{C(OFF)}	0 Fail	@ VCE = 5.0VDC, Ta = 70°C
HTED DI	± 10%	50 samples after 96Hrs
HTFB D I _{C(ON)}	0 Fail	@ Max P _D , Ta = 25°C
MTTF @ 90% confidence	150,000 Min.	@ 25°C, 25mADC
Moisture Sensitivity Level	MSL 1	per JDEC stnd J-STD-020B
Lead Solderability	0 Fail	per Method 208 of MIL-STD-202.
Glass Transition of body	125°C Min.	DSC test method
Temperature Humidity-Bias	± 20%	85°C, 85%RH, 500Hrs, 80% min Iceo
Temperature Cycle	± 20%	per Method 1010.7 of MIL-STD-883E
High Temperature Storage	± 20%	85°C, 500Hrs
Autoclave	0 Fail	T _A = 121°C, Pressure = 15psi, Humidity = 100%, Time = 96Hrs

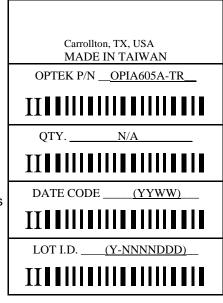
Note: This is to be performed when a change occurs to form, fit or function.

Government and Industry Standard Compliance Requirements

European Union's Reduction of Hazardous Substances (RoHS) Directive 2002/95/EC

Label Identification

DESCRIPTION:


Size: 3" (7.4 cm) X 2.2" (5.5 cm)

Lettering shall be black on white background.

Format shall be as:

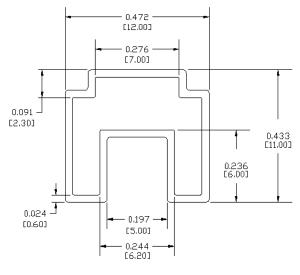
Notes:

- 1. The DATE CODE is a 4-digit code for date of manufacture where YY is the last two digits of the year, and WW is week number of manufacture.
- 2. The LOT I.D. is the manufacturing location lot identification where Y is the year of manufacture, NNNN is a sequential lot identifier, and DDD is the day of the year of manufacture. or use equivalent label format.

Packaging Information:

			Tube		Inner 52 x 7 x 7.5 cm		Small Carton 53.5 x 16 x 17.5 cm			Medium Carton 53.5 x 30.7 x 17.5 cm			Large Carton		
Optek's Optocoupler Part Numbers		Packaging	Qty	Weight									53.5 x 30.7 x 25 cr		25 cm
		Quantities				Weight	Qty	Weight	Gross Weight	Qty	Weight	Gross Weight	Qty	Weight	Gross Weig ht
P/H	4-PIN OPIA400D/A, OPIA410D/A - OPIA413D/A		100	44	3,000	1.40	12,000	6.0	6.5	24,000	12.0	12.5	36,000	18.0	18.5
and SMD	6-PIN OPIA6XXD/A Series		65	44	1,950	1.50	7,800	6.5	7.0	15,600	12.0	12.5	23,400	18.5	19.0
	8-PIN OPIA8XXD Series and OPID804D		48	44	1,440	1.44	5,760	6.0	6.5	11,520	12.0	12.5	17,290	18.0	18.5
M/F SOP	4-PIN and 5-PIN OPIA401B - OPIA404B OPIA500B	, OPIA414B,	100	24	6,000	1.60	24,000	6.5	7.0	48,000	13.0	13.5	72,000	19.5	20.0
SSOP	4-PIN OPIA405C - OPIA4090)	170		10,200										

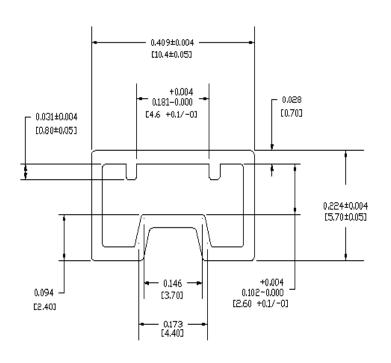
P/H = Pin-Hole Packages (Referred as D = Dual-In-Line Package)


SMD = Standard Surface Mount Packages (Referred as A = 6.5mil SMD)

M/F or SOP = Mini-Flat Packages or Small Outside Packages (Referred as B = 4.40mil SMD w/ 2.54mil Lead-Spacing)

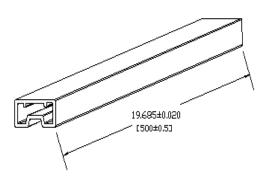
SSOP = Shrink SOP Packages (Referred as C = 3.60mil SMD with 1.27mil Lead-Spacing)

Tube Packaging Specifications—SMD (TU):


19.685±0.020 [500±0.5]

DIMENSIONS ARE IN: INCHES [MILLIMETERS]

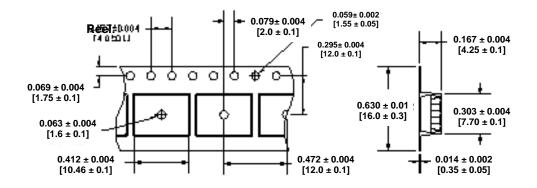
TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]


Quantity: 6-pin: 65pcs/tube

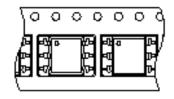
Tube Packaging Specifications— SOP (Mini-flats) (TU):

DIMENSIONS ARE IN: INCHES [MILLIMETERS]

TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]

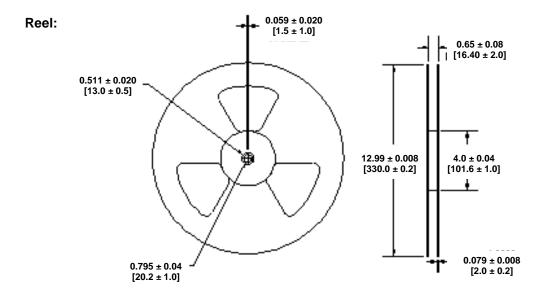


Quantity: 5-pin: 100pcs/tube



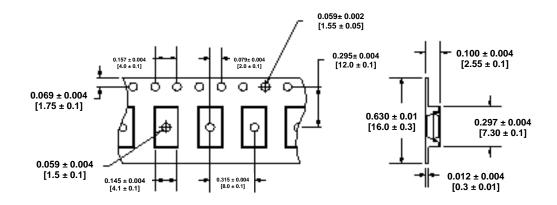
Tape and Reel Packaging Specifications—SMD —(TR):

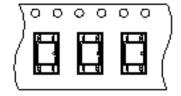
0.157 ± 0.004 [4.0 ± 0.1]



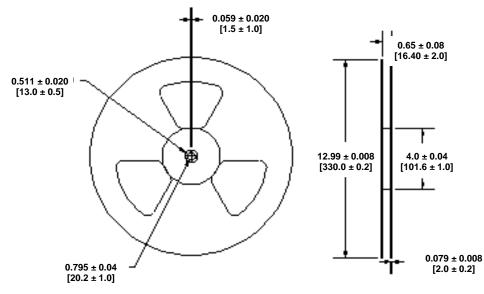
Direction:

DIMENSIONS ARE IN: INCHES [MILLIMETERS]


TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]


Quantity: 6-pin: 1000pcs/Reel

Tape and Reel Packaging Specifications—SOP (Mini-Flat) — (TR):


Direction:

DIMENSIONS ARE IN: INCHES [MILLIMETERS]

TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]

Reel:

Quantity: 5-pin: 1000pcs/Reel

loous	Changa Deparintion	Approval	Doto
Issue	Change Description	Approval	Date
A	Initial Release—Missing 6 Pin SMD mechanical drawing	Chima Ehiem	03/20/2008
A.1	Added 6 Pin SMD package outline	Chima Ehiem	4/02/2008
A.2	Changed equation on page 1	Ramon Martinez	4/25/2008
A.3	Added ML certification no. and VDE pending (pg. 1) Updated OPIA500B Packaging Information to SOP (pg. 2) Updated rest of Packaging Info from DIP to SMD (pg. 2) Added subtitles to package outline drawings. (pg. 2) Updated MSL to 1 (pg. 19) Updated Label Identification size from 7.5" to 7.4" (pg. 19) Updated Label with TT Logo there (pg. 19) Updated Title including SOP packages also. (All Title Headers) Update Packaging Information (pg. 20) Inserted SOP Tube packaging (pg. 21)	Chima Ehiem	10/13/08
	L	1	